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Abstract. For a solid convex body moving on a rough horizontal
plane — known in mechanics as a rattleback — numerical simu-
lations are used to discuss and illustrate dynamical phenomena
that are characteristic of the motion due to the nonholonomic
nature of the mechanical system; the relevant feature is the
nonconservation of the phase volume in the course of the
dynamics evolution. In such a system, a local compression of
the phase volume can produce behavior features similar to those
exhibited by dissipative systems, such as the presence of stable
equilibrium points relevant to stationary rotations; limit cycles
(rotations with oscillations), and strange chaotic attractors. A
chart of dynamical regimes is plotted in a plane of parameters
whose axes are the total mechanical energy and the angle of
relative rotation of the geometric and dynamic principal axes of
the body. The transition to chaos through a sequence of Feigen-
baum period doubling bifurcations is demonstrated. A number
of strange attractors are considered, for which phase portraits,
Lyapunov exponents, and Fourier spectra are presented.

1. Introduction

Phenomena of complex dynamics, such as chaos and
bifurcations, are actively explored in systems of diverse
natures, including mechanical ones [1-4].

A V Borisov Udmurt State University,

ul. Universitetskaya 1, 426034 Izhevsk, Russian Federation;
Moscow Institute of Physics and Technology,

Institutskii per. 9, 141700 Dolgoprudnyi, Moscow region,
Russian Federation;

National Research Nuclear University ‘MEPHI’,

Kashirskoe shosse 31, 115409 Moscow, Russian Federation;
Kalashnikov Izhevsk State Technical University,

ul. Studencheskaya 7, 426069 1zhevsk, Russian Federation
E-mail: borisov@rcd.ru

A O Kazakov Lobachevsky Nizhny Novgorod State University,
prosp. Gagarina 23, 603950 Nizhny Novgorod, Russian Federation
E-mail: kazakovdz@yandex.ru

S P Kuznetsov Saratov Branch of Kotelnikov Institute of
Radioengineering and Electronics, Russian Academy of Sciences,
ul. Zelenaya 38, 410019 Saratov, Russian Federation

E-mail: spkuz@yandex.ru

Received 29 August 2013, revised 1 October 2013
Uspekhi Fizicheskikh Nauk 184 (5) 493500 (2014)
DOI: 10.3367/UFNr.0184.201405b.0493
Translated by S D Danilov; edited by A Radzig

453
454
455
456
458
459

The definition of a dynamical system assumes that the
state given by coordinates in phase space can be obtained
from the initial state at an arbitrary instant of time according
to some rule that is relevant to this system. Being the ideal case
of deterministic description, this definition does not exclude
the possibility of chaotic behavior when the state evolution
resembles a random process. The main attribute of chaos
consists in the sensitivity of motion to small perturbations in
initial conditions, which renders impossible predicting the
states past some time interval which usually depends loga-
rithmically on errors in initial conditions.

If one considers an ensemble composed of a large number
of identical noninteracting systems differing in initial condi-
tions, it corresponds to a cloud of representative points in
phase space, which evolves with time varying in size and
shape, as dictated by the motion of points according to the
dynamical equations of the system.

Traditionally, one distinguishes between conservative and
dissipative dynamical systems.

In physics, the term ‘conservative systems’ implies systems
maintaining energy conservation, which, in particular, relates
to systems of classical mechanics described through the
Hamilton formalism [5, 6]. Hamiltonian systems obey the
Louiville theorem stating the conservation of measure, i.e.,
the phase volume of each element of the cloud of representa-
tive points in the process of dynamics evolution.

In the presence of friction, we have to deal with dissipative
systems in which mechanical energy is not conserved but is
gradually dissipated by transforming into heat, i.e., the
energy of microscopic motion of molecules in the system
proper and its surroundings. The phase volume in dissipative
systems decreases with time, at least in the mean, and as a
result the cloud of representative points ’condenses’ at a
certain subset in phase space called the attractor.! For
systems wherein the energy loss is compensated for by
external sources (open systems), attractors can also be
represented, together with equilibrium states (fixed points),
by limit cycles, which correspond to self-excited oscillations,

! It may occur that more than one attractor coexist in phase space; each of
the attractors is characterized by its own attraction basin—the set of
initial states from which the emitted trajectories arrive at the attractor. In
that case, the system is said to be characterized by multistability.
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and strange attractors, which correspond to chaotic
dynamics.

In systems with invariant measure, i.e., when the Liouville
theorem is obeyed (attractors cannot form under these
conditions), the cloud of representative points can be
regarded as consisting of incompressible fluid, while in the
dissipative case it can be considered as a compressible
substance (similar to vapor) which may condense, substan-
tially reducing its volume when it precipitates on the
attractor.

In mechanics, in addition to systems described in the
framework of the Hamilton formalism, one distinguishes a
special class of systems with nonholonomic constraints, or
briefly, nonholonomic systems (the term was coined by
Heinrich Hertz in the 19th century) [7, 8]. Nonholonomic
systems are encountered in many phenomena of large
practical significance, for example, in the mechanics of
moving or flying apparatuses and in robotics. The history
of exploring these systems is rich in dramatic events,
including errors made by renowned researchers and then
corrected in the course of a more accurate analysis. The
hierarchy of the behavioristic types of nonholonomic
systems [9, 10] includes various kinds, from simple
(integrable) to complex (nonintegrable), which is related to
the number of invariants and symmetries intrinsic in the
problem under consideration.

We turn now to the problem of the motion of a rattle-
back —a rigid body with a smooth convex surface—on a
rough plane, postulating that the velocity at a contact point
between the body and the plane equals zero at any instant of
time. Although friction is present in this case, it cannot
perform work or, accordingly, change the mechanical
energy. Further, let the principal central moments of inertia
differ from each other and the geometrical symmetry axes not
coincide with the inertia axes. This is the so-called rattleback
problem for which the intriguing phenomenon of spin
reversal has long been observed [11-13]: after being spun
like a top, its rotation is slowed down, accompanied by
oscillations (wobbling), and then it starts spinning in the
opposite direction.

From a mathematical viewpoint, the fundamental
property of the rattleback and nonholonomic systems
analogous to it lies in the fact that they lack the invariant
measure understood in the sense of the Liouville theorem
[14]. This is the principal distinction between objects of
nonholonomic mechanics and those of Hamiltonian sys-
tems. Although the system is conservative in the sense of
conserving mechanical energy and is invariant with respect
to the time reversal, the elements of phase space are not
conserved in the course of dynamical evolution, undergoing
local contraction in some domains in phase space and
expansion in others.

The mechanical motion of the rattleback is associated
with the displacement of a representative point on a hypersur-
face of constant energy, with the energy considering as one of
the parameters defining the motion character. Owing to phase
volume contraction, behavioristic types resembling those of
attractors in dissipative systems may occur, for example,
stable equilibrium points corresponding to stationary rota-
tion, limit cycles corresponding to rotation with oscillations,
and strange attractors [8, 15-17]. Each such object always
possesses a symmetric counterpart in phase space, which
would become an attracting set when following the dynamics
in reversed time. Additionally, dynamical regimes, including

chaotic ones, with symmetry to time reversal are possible;
they are referred to as ‘mixed dynamics’ [18].

Thus, we are dealing in this case with a rather specific class
of systems falling between the conservative and dissipative
systems in the traditional treatment. The goal of this paper is
to attract the attention of researches to the problem of
dynamics in systems of that kind and illustrate the phenom-
ena of complex dynamics, characteristic for the rattleback,
with the results of numerical simulations by resorting to the
methods developed previously in studying dissipative sys-
tems.

Unusual, sometimes counterintuitive phenomena of the
dynamics of rattlebacks could also appear interesting in a
conceptual sense for physical problems projecting outside the
rigid-body mechanics proper, for example, for the tasks of
statistical mechanics of media composed of particles lacking
mirror symmetry in geometrical and dynamical characteris-
tics. In this connection, one can mention Ref. [19] treating the
dynamical properties of a granulated medium composed of
such particles.

2. Rattleback model

Let us turn to a frequently applied model of the rattleback in
the shape of an elliptic paraboloid (Fig. 1). Imposing the
condition of zero velocity at the contact point, namely

vitoxr=0, (1)

one may arrive at the following equations for the kinetic
momentum M with respect to the contact point and the unit
vector v in the coordinate system linked to the body [8, 16, 17,
20]:

M=Mxo+mix (@xr)+mgrxy, f=yxo. (2
In this case, the vector o is linked to the vector M by the

relationship M = lo + mr x (o x r), where I is the inertia
tensor, and the vectors y and r are coupled by the relationship

VF(r)

ok ©

Figure 1. A model of a rattleback: G is the center of mass, v is the unit
vector normal to the surface, r is the vector connecting the center of mass
and the contact point, v is the vector of the velocity of the center of mass,
and o is the angular velocity vector.
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where F(r) = 0 is the equation describing the surface of the
body. For an elliptical paraboloid, one obtains

A =3 (L+2) a4 =0,

aj ar

(4)
r = , Iy = _%h , Ir3=—h +17a1y12 +a2y22 .

73 73 2 93

Here, a; and a; are the principal radii of curvature at the
paraboloid vertex, and / is the height of the center of mass
located on the paraboloid axis.

We assume that the third principal axis of inertia coincides
with the principal geometrical axis e3;, whilst the other two
axes of inertia are turned through the angle ¢ about the
geometrical axes. In that case, the tensor of inertia in
geometrical axes has the form

I cos?d+ Lsin?d (I} — I,)cosdsind 0
I=1| (1, —L)cosdsind Isin®6+ Lcos2s 0 |- (5)
0 0 I;

The constants Iy, I, and I3 are the principal central moments
of inertia of the rigid body.

Relationships (2) represent a closed system of equations of
the sixth order with respect to vectors y and M; in order to
determine the coordinates of the center of mass (X, Y), one
needs to solve, along with Eqns (2), additional equations
following from equation (1):

X:w2r37w3r27 Y= wir3 — w3ry . (6)

In the course of numerical integration of the system of
differential equations (2), a set of three linear algebraic
equations relative to the components of the angular velocity
vector is solved to compute the right-hand sides at each step of
the difference scheme, and additional quantities (4) are
computed.

System of equations (2) is characterized by the presence of
the geometrical integral y2 =1, and the energy integral
(1/2)Me — mgory = E. In the six-dimensional phase space
on the manifold defined by the condition that two integrals of
motion be constant, Eqns (2) describe a four-dimensional
flow.

We may cut the phase space through by a certain
intersecting hypersurface S and take advantage of a Poincaré
map. Namely, for any point on the selected hypersurface, the
result of the Poincaré mapping will be the point of the next
hypersurface intersection by the trajectory leaving the former
point. In computations discussed below, the hypersurface was
specified by the condition s =7y ,M; —y,M; =0 (taking
account that the trajectory passes only in the direction of
decreasing s). For a rattleback, the three-dimensional
Poincaré map constructed in this manner does not fall in the
class of maps preserving phase volume, which allows the
existence of stable fixed points, limit circles, and strange
attractors.

In the theory of dynamical systems, in order to describe
system behavior in the vicinity of some reference phase
trajectory, one introduces the Lyapunov exponents [1-4, 21,
22], which characterize exponential, on the average, diver-
gence from (a positive exponent) or convergence to (a
negative exponent) the reference trajectory. The total num-
ber of exponents equals the phase space dimension, so it is six
for system (2), with three of them taking zero values. One zero
exponent is associated with infinitesimal perturbation along

the reference trajectory, i.e., the perturbation having a type of
time shift, and the other two with perturbations of the type
relevant to shifts in energy and in the norm of vector y. One is
left with three nontrivial exponents. If we determine the
Lyapunov exponents from the Poincaré map, one of the
zero exponents immediately drops out of consideration. The
other two zero exponents can be excluded if at each step of
computing the Poincaré map the vector y is normalized to
unity, and the vector of momentum M is normalized to a
quantity which ensures the given value of the total mechanical
energy [17].

3. Phenomena of regular dynamics:
reversal and periodic motion

We begin with a model of the rattleback with the parameters
utilized in Ref. [16]. Let the principal radii of curvature of the
paraboloid be a¢; = 9 and a, = 4, the distance from the vertex
to the center of mass 4 = 1, the acceleration due to gravity
go = 100, the values of the moment of inertia with respect to
the main axes I} =5, I, =6, and I3 =7, and the angle
5 =0.2. It is known that for this case? there is a critical
value of the angular velocity of rotation around the vertical
axis, w, = 18.526, which corresponds to the energy
E, =1300.

If the angular velocity is higher than w,, two regimes of
rotation in the opposite sense around the vertical axis (vertical
spin regimes) exist: stable and unstable. If the rotation is
executed in the ‘inappropriate’ direction, small perturbations
of the initial state launch a complex transition process in
which oscillations around other coordinate axes emerge.
These oscillations, in turn, transform the motion so that a
reversal takes place — the sign of angular velocity component
w3 changes to the opposite one. Figure 2a shows the time
evolution of the vertical component of the angular velocity
vector which changes its sign as a result of a rather long
transition process. Figure 2b depicts the trace left by the
contact point on the plane in the course of this process.

As shown in the work by Karapetyan [15], for an angular
velocity close to the critical value w,, the conditions of the
Andronov—Hopf theorem on the birth of the limit cycle
become satisfied if the stability loss of the rotation is
observed. Passing the threshold w, gives birth to a stable
limit cycle in place of stable vertical rotation, implying a
certain periodic oscillatory solution to the system of equa-
tions (2). Figure 3 displays the results of numerical simula-
tions for the regime of motion that corresponds to the
Karapetyan cycle: the plots of the time dependence of the
kinetic momentum components, the attractor phase portrait
in the two-dimensional projection, and the diagram illustrat-
ing the motion of the contact point on the plane. Although the
velocity and inclination of the rattleback vary strictly
periodically with time in the Karapetyan cycle, the trajectory
of the contact point remains, in general, open and fills a ring
stripe of finite width. Indeed, there are generally no grounds
to expect that the ratio of the period of rattleback oscillations
to the period it takes the contact point to pass its own
trajectory will be expressed by a rational number, so that the
motion as a whole proves to be quasiperiodic instead of
periodic.

2 The parameters given and the equations written out here correspond to
the length measured in centimeters and time in units of 10~/2 s for a body
1 kg in mass.
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Figure 2. Time dependence of the component w; of angular velocity
illustrating the reversal effect (a), and the trace left on the plane by the
contact point in the course of this process (b) for £ = 1380, 1; = 5, I, = 6,
=7, =100,a1 =9, a0 =4,h=1,and 6 = 0.2.

4. Phenomena of complex dynamics

Turning to the consideration of complex dynamics, we set for
a rattleback shaped like an elliptic paraboloid the principle
moments of inertia at I} =2, I, = 6, and I3 = 7, taking, as
earlier,a; =9, a, =4, h =1, and go = 100 [17]. In this case,
stable vertical rotation is absent, even for large energies, and
the general pattern of dynamical behavior as a function of the
parameters E (energy) and ¢ (the angle of rotation of the
inertia axes relative to the geometrical axes) proves to be
amazingly rich.

Figure 4 demonstrates the regime diagram for the
Poincaré mapping of the system under consideration on the
parameter plane (E—0). To construct the diagram, an
exhaustion of mesh nodes in the plane (E,0) with some
mesh width over both parameters has been carried out. At
each mesh point, about 10? iterations of the Poincaré map
have been performed, and the results of the last iterations
have been analyzed with regard to the presence of the
repetition period within some given level of admissible
errors. On discovering the periodicity, the respective pixel in
the diagram was marked in a designated color, and the
analysis shifted to the next point in the parameter plane. In
so doing, it was reasonable to start iterations at a new point
from the state obtained as a result of iterations at the
preceding point (‘scanning with inheritance’), which in most
cases warrants acceleration of convergence to the steady
regime of dynamics. In constructing the diagram presented
in Fig. 4, the results of scanning with inheritance in directions
from left to right and from bottom to top have been used. The
color coding rule is provided in the right part of the figure,
and the period was determined by following the dynamics of
the angular momentum component M3.

Figure 3. Time dependence of the angular momentum components (a); the
phase portrait of the attractor in the projection onto the plane M| — M,
(b), and the trajectory of motion of the point of contact between the body
and the plane (c) in the Karapetyan cycle for E= 1000, I, =5, I, =6,
L=7g =100,y =9,a0 =4, h=1,and 6 =0.2.
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Figure 4. (Color online.) Diagrams of the regimes of motion on the
parameter plane of the energy E — angle 6 of rotation of the inertia axes
with respect to the geometrical axes for the Poincaré map of a rattleback
shaped as an elliptic paraboloidat I, = 2,1, = 6,13 =7,g, = 100,a; =9,
a =4, and h = 1.

We will consider in more detail the attractors which are
realized at points A, B, and C in the diagram of Fig. 4.

If one moves upward in the parameter plane along the
vertical line passing through point A, a transition to chaos via
the sequence of bifurcations of period doubling can be
observed. This is illustrated by the tree-like diagram in
Fig. 5a, which displays a characteristic pattern of branches,
pinching off at bifurcation points, and the ‘crown’ filled with
points that corresponds to the chaos region. Figure 5b zooms
in on parts of the pattern, which, upon magnification, more
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Figure 5. Bifurcation trees in the domain of transition to chaos through period doublings according to Feigenbaum for the parameters I} =2, I, = 6,
=17, =100,a, =9,a, =4, h =1, and E = 642. Scanning is carried out toward the larger parameter J, with inherited initial conditions.

Table 1. Estimates of the Feigenbaum constants.

(2.4)/(4.8)

(4.8)/(8.16)

(8.16)/(16.32)

(32.64)/(64.128)

Feigenbaum constants

OF

6.52

5.29

4.70

4.62

4.6692

oF

-3.79

—2.82

—2.64

—2.54

—2.5029

and more resemble the classical pattern of the ‘Feigenbaum
tree’ for one-dimensional maps [21, 22].

Measuring the horizontal intervals between branch
splitting in the diagram and computing their ratios for
subsequent doubling levels, we obtain the first row of
Table 1. Likewise, having determined the ratios of intervals
between branch splitting in the vertical direction, we fill in
the second row. For the transition to be in the Feigenbaum
universality class [21-24], the ratios must converge to the
universal constants or ~ 4.6692 and af ~ —2.5029. It can
be seen from Table 1 that this is the case. The fact that the
estimates of constants are larger in absolute value at the
first levels of doubling is linked to the crossover effect [25].
Given the small effective dissipation (understood as the
characteristics of 3D phase volume contraction in the
given domain in phase space), the constants at low levels
are close to those characteristic of doubling in conservative
systems: oy ~ 8.721 and ay ~ —4.018 [26, 27]. Upon each
subsequent bifurcation, the degree of contraction is doubled
over the characteristic period, and the estimates tend
asymptotically to the universal constants or and o.

The attractor of the three-dimensional Poincaré map,
emerging as the result of the cascade of period doubling, is
shown in Fig. 6 for point A (E =642, 6 =0.922) in the
projection onto the plane of variables M| and M. Visually, it
resembles attractors of dissipative maps observed immedi-
ately beyond the threshold of transition to chaos through
period doublings. The figure also shows the spectrum of
oscillations of variable M3 for the dynamics on the attrac-
tor. The spectrum contains a set of peaks with a hierarchic
structure characteristic of an attractor appearing through the
Feigenbaum cascade [21, 22, 24]. According to Feigenbaum,
the peaks of each subsequent level should be, on average,
13.4 dB lower than at the preceding level, which agrees well
with the observed picture. The peaks at deep levels are
broken, giving way to a continuous spectrum, i.e., the
dynamics become chaotic.

The Lorenz attractor [28, 29] constitutes the already
classical object of nonlinear dynamics and chaos theory,
which falls in the class of singular-hyperbolic, or quasihyper-
bolic attractors. For many years, the Lorenz model was a
subject of active and rigorous research [29-31]. Its summary

50 a
M, ! \

—50 L
—100 0 M, 100

S,dB

40

—40 I
—80

—120 J

0 100 200 f

Figure 6. The portrait of an attractor in the Poincaré section in a projection
onto the plane of two components of angular momentum (a), the Fourier
spectrum for the component M3 (b), and the trace left on the plane by the
contact point (c) for the dynamics on the attractor. The parameters are as
follows: I} =2, L =6, =7,80=100,a; =9,a, =4, h=1, E = 642,
and 0 = 0.922.
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Figure 7. Portrait of an attractor in the Poincaré section in a projection
onto the plane of two angular momentum components (a), the Fourier
spectrum of the component M3 (b), and the trace left by the contact point
(c) on the plane for the dynamics on the attractor. The parameters are as
follows: [y =2, L =6, =17, =100, a; =9, ap =4, h=1, E=752,
and 0 = 0.485.

result was accurate mathematical substantiation of the
chaotic nature of the dynamics on the Lorenz attractor,
which was given relatively recently by W Tucker [32] based
on a combination of computer-assisted proof and accurate
analytical consideration. In this respect, the discovery of quite
a general situation in which a Lorenz type attractor is born as
a result of a certain sequence of bifurcation events in three-
dimensional maps seems interesting and remarkable [18]. This
attractor arises when, after the bifurcation of period dou-
bling, the newly appeared double-periodic orbit loses its
stability because of the Neimark—Sacker bifurcation (and
not as a result of secondary doubling), upon which the
unstable manifold of the primary periodic point having lost
its stability intersects the stable two-dimensional manifold of
the point. As it turned out, this is also related, in particular, to
the three-dimensional Poincaré map for the nonholonomic
model of rattlebacks [33].

An example of a Lorenz type attractor in the Poincaré
map for a rattleback is given in Fig. 7 in a two-dimensional
projection, together with the spectrum of oscillations of the
variable M3, and a diagram illustrating the motion of the
contact point along the plane. The problem parameters,
selected as described in Ref. [33], correspond to point B in
Fig. 4.

As is easy to ascertain, the representative point performs
jumps in iterations of the Poincaré map, visiting, in an
alternating manner, the ‘curls’ of the attractor—left and
right ones. For the map conforming to a two-fold iteration,
subsequent positions of the representative point can be
conceived of as belonging to a continuous trajectory of some
approximating flow system with a Lorenz attractor.

120 = a|s,dB
M 20
80 |

0

40 —-20

—40

0 —60
~100 0 M, 100 0 200 f

Figure 8. Portrait of an attractor in the Poincaré section in a projection
onto the plane of two angular momentum components (a), the Fourier
spectrum of the component M3 (b), and the trace left by the contact point
(c) on the plane for the dynamics on the attractor. The parameters are as
follows: 11 = 2, 12 = 6, 13 = 7, 8o = 100, ay = 9, ap = 4, h= 1, E= 620,
and 0 = 1.178.

For this attractor, the Lyapunov exponents of the three-
dimensional map are, according to computations, A, =
0.0202, A, =0.0000, and A3 = —0.1925. The first one is
positive, which points to the existence of chaos. This can
also be judged by the character of the spectrum in Fig. 7b
which, as can be seen, is continuous, albeit rather irregular.
The second exponent is close to zero, which is linked to the
possibility of describing the dynamics with the help of the
approximating flow system. The third one is negative, making
the sum of all exponents negative too, which ensures the
contraction of the phase volume to zero in the dynamic
process which ends at the attractor. The dimension of the
attractor in the Poincaré map estimated by the Kaplan—
Yorke formula [21, 22] is D =2+ (A + A2)/|43] = 2.10,
which slightly exceeds two, the same as for the classical
Lorenz attractor.

Figure 8 displays the attractor at point C (E = 620,
0 =3n/8) and the Fourier spectrum which is apparently
related to well-developed chaos. The irregularity of this
spectrum, in contrast to the irregularity of the spectra in
Figs 6 and 7, is not strong, which attests to the absence of
any substantial periodic components of motion. The
Lyapunov exponents are here as follows: A, =0.282,
Ay = —0.093, and A3 = —0.686. The first Lyapunov expo-
nent is positive, while the second one is negative but smaller
than the first one in absolute value. For this reason, the
dimension according to the Kaplan—Yorke formula exceeds
two: D =2+ (A + A3)/|A3| =~ 2.26.

5. Conclusions

This article presents materials of the computer-assisted study
on the dynamics of the nonholonomic model of a rattle-
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back —a dynamical system of a specific type which occupies
an intermediate place between conservative and dissipative
systems in the common sense. On the one hand, the system
considered here possesses mechanical energy conservation
and is invariant to time reversal; on the other hand, it does not
preserve phase volume, which may locally experience con-
traction or expansion. For this reason, one may observe on
the hypersurface of constant energy in phase space a
dynamical behavior of the system which, on a large time
scale, is defined by attracting sets—the attractors. They
include fixed points associated with stable rotations, limit
cycles which correspond to rotations with oscillations, and
strange chaotic attractors. From the methodical viewpoint,
the presence of attractors makes using techniques applied
thus far to dissipative dynamical systems both natural and
relevant, which we demonstrated with concrete examples.
Apparently, a similar approach can also be productive for
other mechanical systems capable of demonstrating phenom-
ena of complex dynamics.

In the theories of oscillations and nonlinear dynamics, it is
frequently assumed, either explicitly or implicitly, that
attention should only be paid to rough (structurally-stable)
phenomena, which implies the insensitivity of dynamical
regimes to variations in parameters and characteristics of
models and systems, thus ensuring the observability of these
phenomena in practice. However, following this rule in a
literal way is not always appropriate. For example, Hamilto-
nian systems, being a subset of all possible dynamical systems,
are certainly not rough, because they may be expelled from
their class by an infinitesimally small variation of the right-
hand sides of their differential equations. The history of
science witnesses that this has not led to abandoning studies
of Hamiltonian systems, although the question of observa-
bility of their intrinsic dynamic phenomena in experiment
frequently proves to be anything but trivial.

Thus, under certain conditions, one phenomenon or
another may correctly correspond to the dynamics on finite
time intervals, but the description may cease to be relevant
at large time, for example, because of dissipation, however
small as is desired. Similar reservations should be made with
respect to the nonholonomic model of a rattleback
considered here, at least with respect to its conservativity
in the sense of mechanical energy conservation. Indeed, this
model assumes a far going idealization in the problem
statement since, in a realistic physical system, the nonholo-
nomic constraint can be violated, so that obtaining a
theoretical description, rigorous in detail, would demand
attention for actual friction laws which violate the con-
servative nature of the system.

For the rattleback, a useful discussion of the relation of
various theoretical models to the actual experiment has been
carried out, notably, in Ref. [34]. As a well-known example
for which the nonholonomic model clearly fails, one may
mention the description of the Thompson top, also known as
the ‘Chinese top’ [35, 36].

Nevertheless, the nonholonomic model proves to be
useful and insightful, allowing one to explain numerous
phenomena observed with real rattlebacks, including rever-
sal, multiple reversals, Karapetyan cycles, and chaotic
oscillations over finite time intervals. From the viewpoint of
quantitative correspondence to actual experiments, the
results obtained in the framework of the nonholonomic
model should be taken with caution (including those related
to the trajectory of the contact point).
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