Issues

 / 

2010

 / 

June

  

Methodological notes


On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate


Chernyshevskii Saratov State University, ul. Astrakhanskaya 83, Saratov, 410071, Russian Federation

For a field—matter system, general nonstationary balance equations for energy and momentum densities and their transport velocities are obtained based on a rigorous nonstationary definition of these densities depending on the creation history of the field. We analyze the simplest dispersion law determined by conductivity dissipation; we find the electromagnetic energy density, phase velocity, group velocity, and energy and momentum transport velocities of a plane monochromatic wave. The low-frequency energy density is shown to be given by the electrostatic density in which the dielectric constant is replaced with its real part and the energy transport velocity is equal to the phase velocity. The group velocity can exceed the speed of light. We prove that the Minkowski form of momentum density must be used in the medium, and find the corresponding transport velocity, which in the case under consideration also coincides with the phase velocity. Energy and momentum conservation laws are shown to hold for a plane electromagnetic wave propagating in a medium or diffracted by a conducting plate.

Fulltext pdf (475 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201006e.0623
PACS: 03.50.De, 41.20.Jb, 42.25.Fx (all)
DOI: 10.3367/UFNe.0180.201006e.0623
URL: https://ufn.ru/en/articles/2010/6/d/
000281644500004
2-s2.0-77958538442
2010PhyU...53..595D
Citation: Davidovich M V "On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate" Phys. Usp. 53 595–609 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Давидович М В «О законах сохранения энергии и импульса электромагнитного поля в среде и при дифракции на проводящей пластине» УФН 180 623–638 (2010); DOI: 10.3367/UFNr.0180.201006e.0623

References (58) Cited by (14) Similar articles (20) ↓

  1. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction mediumPhys. Usp. 52 649–654 (2009)
  2. I.N. Toptygin, K. Levina “Energy—momentum tensor of the electromagnetic field in dispersive mediaPhys. Usp. 59 141–152 (2016)
  3. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic fieldPhys. Usp. 52 937–943 (2009)
  4. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 16 434–439 (1973)
  5. Yu.A. Spirichev “On choosing the energy—momentum tensor in electrodynamics and on the Abraham forcePhys. Usp. 61 303–306 (2018)
  6. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent mediaPhys. Usp. 60 935–947 (2017)
  7. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic mediaPhys. Usp. 51 363–374 (2008)
  8. V.L. Ginzburg, V.A. Ugarov “Remarks on forces and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 19 94–101 (1976)
  9. E.H. Lock “Angular beam width of a slit-diffracted wave with noncollinear group and phase velocitiesPhys. Usp. 55 1239–1254 (2012)
  10. V.G. Polevoi, S.M. Rytov “The four-dimensional group velocitySov. Phys. Usp. 21 630–638 (1978)
  11. A.D. Pryamikov, A.S. Biriukov “Excitation of cyclical Sommerfeld waves and Wood’s anomalies in plane wave scattering from a dielectric cylinder at oblique incidencePhys. Usp. 56 813–822 (2013)
  12. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)Phys. Usp. 62 487–495 (2019)
  13. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic mediaPhys. Usp. 54 145–165 (2011)
  14. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic wavesPhys. Usp. 51 355–361 (2008)
  15. L.A. Vainshtein “Propagation of pulsesSov. Phys. Usp. 19 189–205 (1976)
  16. V.G. Niz’ev “Dipole-wave theory of electromagnetic diffractionPhys. Usp. 45 553–559 (2002)
  17. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structuresPhys. Usp. 54 281–290 (2011)
  18. A.G. Shalashov, E.D. Gospodchikov “'Anomalous' dissipation of a paraxial wave beam propagating along an absorbing planePhys. Usp. 65 1303–1312 (2022)
  19. A.A. Kolokolov, G.V. Skrotskii “Interference of reactive components of an electromagnetic fieldSov. Phys. Usp. 35 (12) 1089–1093 (1992)
  20. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic mediaPhys. Usp. 55 147–160 (2012)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions